Relevance matrices in LVQ

نویسندگان

  • Petra Schneider
  • Michael Biehl
  • Barbara Hammer
چکیده

We propose a new matrix learning scheme to extend Generalized Relevance Learning Vector Quantization (GRLVQ). By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account. In comparison to the weighted euclidean metric used for GRLVQ, this metric is more powerful to represent the internal structure of the data appropriately while maintaining its excellent generalization ability as large margin optimizer. The algorithm is tested and compared to alternative LVQ schemes using an artificial dataset and the image segmentation data from the UCI repository.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust object segmentation by adaptive metrics in Generalized LVQ

We investigate the effect of several adaptive metrics in the context of figure-ground segregation, using Generalized LVQ to train a classifier for image regions. Extending the Euclidean metrics towards local matrices of relevance-factors does not only lead to a higher classification accuracy and increased robustness on heterogeneous/noisy data, but also figureground segregation using this adapt...

متن کامل

Regularization in matrix learning

We present a regularization technique to extend recently proposed matrix learning schemes in Learning Vector Quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can display a tendency towards over-simplification in the course of training. An overly pronounced elimination of dimensions...

متن کامل

Advanced metric adaptation in Generalized LVQ for classification of mass spectrometry data

Metric adaptation constitutes a powerful approach to improve the performance of prototype based classication schemes. We apply extensions of Generalized LVQ based on different adaptive distance measures in the domain of clinical proteomics. The Euclidean distance in GLVQ is extended by adaptive relevance vectors and matrices of global or local influence where training follows a stochastic gradi...

متن کامل

The Performance of LVQ Based Automatic Relevance Determination Applied to Spontaneous Biosignals

The issue of Automatic Relevance Determination (ARD) has attracted attention over the last decade for the sake of efficiency and accuracy of classifiers, and also to extract knowledge from discriminant functions adapted to a given data set. Based on Learning Vector Quantization (LVQ), we recently proposed an approach to ARD utilizing genetic algorithms. Another approach is the Generalized Relev...

متن کامل

An informational energy LVQ approach for feature ranking

Input feature ranking and selection represent a necessary preprocessing stage in classification, especially when one is required to manage large quantities of data. We introduce a weighted LVQ algorithm, called Energy Relevance LVQ (ERLVQ), based on Onicescu’s informational energy [10]. ERLVQ is an incremental learning algorithm for supervised classification and feature ranking.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007